Doubling Measures, Monotonicity, and Quasiconformality

نویسندگان

  • Leonid V. Kovalev
  • Diego Maldonado
  • Jang-Mei Wu
چکیده

We construct quasiconformal mappings in Euclidean spaces by integration of a discontinuous kernel against doubling measures with suitable decay. The differentials of mappings that arise in this way satisfy an isotropic form of the doubling condition. We prove that this isotropic doubling condition is satisfied by the distance functions of certain fractal sets. Finally, we construct an isotropic doubling measure that is not absolutely continuous with respect to the Lebesgue measure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 06 11 11 0 v 1 [ m at h . C A ] 4 N ov 2 00 6 DOUBLING MEASURES , MONOTONICITY , AND QUASICONFORMALITY

We construct quasiconformal mappings in Euclidean spaces by integration of a discontinuous kernel against doubling measures with suitable decay. The differentials of mappings that arise in this way satisfy an isotropic form of the doubling condition. We prove that this isotropic doubling condition is satisfied by the distance functions of certain fractal sets. Finally, we construct an isotropic...

متن کامل

An N-Dimensional Version of the Beurling-Ahlfors Extension

We extend monotone quasiconformal mappings from dimension n to n + 1 while preserving both monotonicity and quasiconformality. The extension is given explicitly by an integral operator. In the case n = 1 it yields a refinement of the Beurling-Ahlfors extension.

متن کامل

Sufficient conditions for quasiconformality of harmonic mappings of the upper halfplane onto itself

In this paper we introduce a class of increasing homeomorphic self-mappings of R. We define a harmonic extension of such functions to the upper halfplane by means of the Poisson integral. Our main results give some sufficient conditions for quasiconformality of the extension.

متن کامل

On a Non-monotonicity Effect of Similarity Measures

The effect of non-monotonicity of similarity measures is addressed which can be observed when measuring the similarity between patterns with increasing displacement. This effect becomes the more apparent the less smooth the pattern is. It is proven that commonly used similarity measures like f -divergence measures or kernel functions show this non-monotonicity effect which results from neglecti...

متن کامل

Null Sets for Doubling and Dyadic Doubling Measures

In this note, we study sets on the real line which are null with respect to all doubling measures on R, or with respect to all dyadic doubling measures on R. We give some suucient conditions for the former, a test for the latter, and some examples. Our work is motivated by a characterization of dyadic doubling measures by Feeerman, Kenig and Pipher 5], and by a result of Martio 8] on porous set...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006